Author:
Gang Sumyung,Fabrice Ndayishimiye,Chung Daewon,Lee Joonjae
Abstract
As the size of components mounted on printed circuit boards (PCBs) decreases, defect detection becomes more important. The first step in an inspection involves recognizing and inspecting characters printed on parts attached to the PCB. In addition, since industrial fields that produce PCBs can change very rapidly, the style of the collected data may vary between collection sites and collection periods. Therefore, flexible learning data that can respond to all fields and time periods are needed. In this paper, large amounts of character data on PCB components were obtained and analyzed in depth. In addition, we proposed a method of recognizing characters by constructing a dataset that was robust with various fonts and environmental changes using a large amount of data. Moreover, a coreset capable of evaluating an effective deep learning model and a base set using n-pick sampling capable of responding to a continuously increasing dataset were proposed. Existing original data and the EfficientNet B0 model showed an accuracy of 97.741%. However, the accuracy of our proposed model was increased to 98.274% for the coreset of 8000 images per class. In particular, the accuracy was 98.921% for the base set with only 1900 images per class.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献