MEMS Hydrophone Signal Denoising and Baseline Drift Removal Algorithm Based on Parameter-Optimized Variational Mode Decomposition and Correlation Coefficient

Author:

Yan Huichao,Xu Ting,Wang Peng,Zhang Linmei,Hu Hongping,Bai Yanping

Abstract

Underwater acoustic technology is an important means of detecting the ocean. Due to the complex influence of the marine environment, there is a lot of noise and baseline drift in the signals collected by hydrophones. In order to solve this problem, this paper proposes a denoising and baseline drift removal algorithm for MEMS vector hydrophone based on whale-optimized variational mode decomposition (VMD) and correlation coefficient (CC). Firstly, the power spectrum entropy (PSE), which reflects the variation characteristics of the signal frequency is selected as the fitness function of the whale-optimization algorithm to find the parameters (K,α) of the VMD. It is easier to find the global optimal solution of the parameters by combining the whale-optimization algorithm. Then, using the VMD algorithm after obtaining the parameters, the original signal is decomposed to obtain the intrinsic mode functions (IMFs), and calculating the correlation coefficients (CCs) between the IMFs and the original signal. Finally, the CC threshold is used to remove the noise IMFs, and the rest of the useful IMFs are reconstructed to complete the denoising and baseline drift removal process of the original signals. In the simulation experiments, the algorithm proposed in this paper shows better performance by comparing conventional digital signal-processing methods and the related algorithms proposed recently. Applied in the experiments of a MEMS hydrophone, the effectiveness of the proposed algorithm is also verified. This algorithm can provide new ideas for signal denoising and baseline drift removal.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3