High Precision Motion Control of Electro-Mechanical Launching Platform with Modeling Uncertainties: A New Integrated Error Constraint Asymptotic Design

Author:

Dong ZhenleORCID,Yang Yinghao,Li Geqiang,Zhang Zheng

Abstract

For the demands of a high precision motion control of an uncertain electro-mechanical launching platform, a novel integrated error constraint asymptotic control in the presence of parametric uncertainties and uncertain disturbance is proposed, of which the barrier function method and a continuous asymptotic control design are integrated for the first time. The former technique can effectively avoid excessive tracking errors at the transient phase, which is caused by the disturbance and the large uncertain system parameters’ deviation between the initial estimated value and the actual value, by selecting a proper barrier threshold, while the latter technique can handle the uncertain disturbance to achieve asymptotic tracking. A rigorous stability analysis is given to illustrate the theoretical performance. In addition, as a supplementary measure, repetitive control is employed to estimate and compensate the possible periodic-like disturbance under certain conditions. Two experimental cases on a prototype of a launching platform demonstrate the effectiveness of the proposed controller.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Henan Province

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3