Position Soft-Sensing of Direct-Driven Hydraulic System Based on Back Propagation Neural Network

Author:

Zhang ShuzhongORCID,Chen Tianyi,Minav TatianaORCID,Cao Xuepeng,Wu Angeng,Liu Yi,Zhang Xuefeng

Abstract

Automated operations are widely used in harsh environments, in which position information is essential. Although sensors can be equipped to obtain high-accuracy position information, they are quite expensive and unsuitable for harsh environment applications. Therefore, a position soft-sensing model based on a back propagation (BP) neural network is proposed for direct-driven hydraulics (DDH) to protect against harsh environmental conditions. The proposed model obtains a position by integrating velocity computed from the BP neural network, which trains the nonlinear relationship between multi-input (speed of the electric motor and pressures in two chambers of the cylinder) and single-output (the cylinder’s velocity). First, the model of a standalone crane with DDH was established and verified by experiment. Second, the data from batch simulation with the verified model was used for training and testing the BP neural network in the soft-sensing model. Finally, position estimation with a typical cycle was performed using the created position soft-sensing model. Compared with the experimental data, the maximum soft-sensing position error was about 7 mm, and the error rate was within ±2.5%. Furthermore, position estimations were carried out with the proposed soft-sensing model under differing working conditions and the errors were within 4 mm, but the periodically cumulative error was observed. Hence, a reference point is proposed to minimize the accumulative error, for example, a point at the middle of the cylinder. Therefore, the work can be applied to acquire position information to facilitate automated operation of machines equipped with DDH.

Funder

Key Laboratory of Expressway Construction Machinery of Shaanxi Province, China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference30 articles.

1. Progress and Trend of Construction Machinery Intelligence;Yang;Constr. Mach. Technol. Manag.,2018

2. Performance Comparison between Single and Double Pump Controlled Asymmetric Cylinder under Four-quadrant Operation;Zhang;Trans. Chin. Soc. Agric. Mach.,2018

3. A dual EHA system for the improvement of position control performance via active load compensation

4. Research Status and Development Trend of Intelligent Excavators;Li;J. Mech. Eng.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3