Vision Transformers in Optimization of AI-Based Early Detection of Botrytis cinerea

Author:

Christakakis Panagiotis1ORCID,Giakoumoglou Nikolaos1ORCID,Kapetas Dimitrios1ORCID,Tzovaras Dimitrios1,Pechlivani Eleftheria-Maria1ORCID

Affiliation:

1. Centre for Research and Technology Hellas, Information Technologies Institute, 57001 Thessaloniki, Greece

Abstract

Detecting early plant diseases autonomously poses a significant challenge for self-navigating robots and automated systems utilizing Artificial Intelligence (AI) imaging. For instance, Botrytis cinerea, also known as gray mold disease, is a major threat to agriculture, particularly impacting significant crops in the Cucurbitaceae and Solanaceae families, making early and accurate detection essential for effective disease management. This study focuses on the improvement of deep learning (DL) segmentation models capable of early detecting B. cinerea on Cucurbitaceae crops utilizing Vision Transformer (ViT) encoders, which have shown promising segmentation performance, in systemic use with the Cut-and-Paste method that further improves accuracy and efficiency addressing dataset imbalance. Furthermore, to enhance the robustness of AI models for early detection in real-world settings, an advanced imagery dataset was employed. The dataset consists of healthy and artificially inoculated cucumber plants with B. cinerea and captures the disease progression through multi-spectral imaging over the course of days, depicting the full spectrum of symptoms of the infection, ranging from early, non-visible stages to advanced disease manifestations. Research findings, based on a three-class system, identify the combination of U-Net++ with MobileViTV2-125 as the best-performing model. This model achieved a mean Dice Similarity Coefficient (mDSC) of 0.792, a mean Intersection over Union (mIoU) of 0.816, and a recall rate of 0.885, with a high accuracy of 92%. Analyzing the detection capabilities during the initial days post-inoculation demonstrates the ability to identify invisible B. cinerea infections as early as day 2 and increasing up to day 6, reaching an IoU of 67.1%. This study assesses various infection stages, distinguishing them from abiotic stress responses or physiological deterioration, which is crucial for accurate disease management as it separates pathogenic from non-pathogenic stress factors. The findings of this study indicate a significant advancement in agricultural disease monitoring and control, with the potential for adoption in on-site digital systems (robots, mobile apps, etc.) operating in real settings, showcasing the effectiveness of ViT-based DL segmentation models for prompt and precise botrytis detection.

Funder

European Union’s Horizon 2020 research and innovation program

Centre for Research and Technology Hellas

Publisher

MDPI AG

Reference61 articles.

1. Botrytis cinerea: The cause of grey mould disease;Williamson;Mol. Plant Pathol.,2007

2. Pathogenic mechanisms and control strategies of Botrytis cinerea causing post-harvest decay in fruits and vegetables;Li;Food Qual. Saf.,2018

3. Gray mold caused by Botrytis cinerea limits grape production in Chile;Latorre;Cienc. Investig. Agrar.,2015

4. Potential of deep learning and snapshot hyperspectral imaging for classification of species in meat;Reis;Food Control,2020

5. Integrated management of postharvest gray mold on fruit crops;Romanazzi;Postharvest Biol. Technol.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3