Optimizing Curriculum Vitae Concordance: A Comparative Examination of Classical Machine Learning Algorithms and Large Language Model Architectures

Author:

Maree Mohammed1ORCID,Shehada Wala’a2ORCID

Affiliation:

1. Department of Information Technology, Faculty of Information Technology, Arab American University, 13 Zababdeh, Jenin P.O. Box 240, Palestine

2. Department of Natural, Engineering and Technology Sciences, Ramallah Campus, Arab American University, Jenin P.O. Box 240, Palestine

Abstract

Digital recruitment systems have revolutionized the hiring paradigm, imparting exceptional efficiencies and extending the reach for both employers and job seekers. This investigation scrutinized the efficacy of classical machine learning methodologies alongside advanced large language models (LLMs) in aligning resumes with job categories. Traditional matching techniques, such as Logistic Regression, Decision Trees, Naïve Bayes, and Support Vector Machines, are constrained by the necessity of manual feature extraction, limited feature representation, and performance degradation, particularly as dataset size escalates, rendering them less suitable for large-scale applications. Conversely, LLMs such as GPT-4, GPT-3, and LLAMA adeptly process unstructured textual content, capturing nuanced language and context with greater precision. We evaluated these methodologies utilizing two datasets comprising resumes and job descriptions to ascertain their accuracy, efficiency, and scalability. Our results revealed that while conventional models excel at processing structured data, LLMs significantly enhance the interpretation and matching of intricate textual information. This study highlights the transformative potential of LLMs in recruitment, offering insights into their application and future research avenues.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3