Monitoring Inattention in Construction Workers Caused by Physical Fatigue Using Electrocardiograph (ECG) and Galvanic Skin Response (GSR) Sensors

Author:

Ouyang Yewei1,Liu Ming2,Cheng Cheng2,Yang Yuchen2,He Shiyi2,Zheng Lan2

Affiliation:

1. Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, China

2. Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha 410012, China

Abstract

Physical fatigue is frequent for heavy manual laborers like construction workers, but it causes distraction and may lead to safety incidents. The purpose of this study is to develop predictive models for monitoring construction workers’ inattention caused by physical fatigue utilizing electrocardiograph (ECG) and galvanic skin response (GSR) sensors. Thirty participants were invited to complete an attention-demanding task under non-fatigued and physically fatigued conditions. Supervised learning algorithms were utilized to develop models predicting their attentional states, with heart rate variability (HRV) features derived from ECG signals and skin electric activity features derived from GSR signals as data inputs. The results demonstrate that using HRV features alone could obtain a prediction accuracy of 88.33%, and using GSR features alone could achieve an accuracy of 76.67%, both through the KNN algorithm. The accuracy increased to 96.67% through the SVM algorithm when combining HRV and GSR features. The findings indicate that ECG sensors used alone or in combination with GSR sensors can be applied to monitor construction workers’ inattention on job sites. The findings would provide an approach for detecting distracted workers at job sites. Additionally, it might reveal the relationships between workers’ physiological features and attention.

Funder

Scientific Research Fund of Hunan Provincial Education Department

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3