Expression and Distribution of the Auxin Response Factors in Sorghum bicolor During Development and Temperature Stress

Author:

Chen Dan,Wang Weian,Wu Yaqin,Xie HuiORCID,Zhao Linfei,Zeng Qi,Zhan Yonghua

Abstract

Auxin response factor (ARF) is a transcription factor that can specifically bind to the promoter of auxin-responsive genes in plants and plays an important regulatory role in plant growth and development. The previous studies have predicted 25 ARF genes in Sorghum bicolor (SbARFs) and indicated that SbARFs play complex roles in salt and drought stresses. In this study, we reclassified and analyzed the structures of ARFs in three plants, including sorghum, rice, and Arabidopsis. Phylogenetic analyses categorized 73 ARF into five classes. By studying the characterization of the structures, it was found that SbARFs from the same evolutionary branches showed similar motif patterns. Furthermore, the expression patterns of SbARF genes during development and temperature stress were investigated in sorghum. Quantitative transcription-quantitative polymerase chain reaction (qRT-PCR) results suggested that they had different expression patterns in vegetative and reproductive organs at various developmental stages. High and low-temperature treatments and qRT-PCR demonstrated some of them changed dramatically along with the increase of treatment time. Additionally, in situ hybridization results displayed that SbARF genes were accumulated in vascular tissues under temperature stress. These findings provide evidence that SbARFs may play important roles in sorghum vegetative development, reproductive development, and auxin response to temperature stress.

Funder

the National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3