Investigation of Ocean Sub-Surface Processes in Tropical Cyclone Phailin Using a Coupled Modeling Framework: Sensitivity to Ocean Conditions

Author:

Chakraborty TapajyotiORCID,Pattnaik Sandeep,Baisya HimadriORCID,Vishwakarma VijayORCID

Abstract

The present study is aimed to investigate sub-surface ocean processes and their contribution to the intensification of a tropical cyclone (TC) from a coupled-modeling perspective. The Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) model was employed to simulate TC Phailin, which originated over the Bay of Bengal and made landfall on the eastern coast of India in October 2013. Three sub-surface ocean condition datasets—viz., (a) the European Centre for Medium-Range Weather Forecast (ECMWF) Ocean Reanalysis, (b) the Climate Forecast System Version 2 (CFSV2) Operational Analysis, and (c) the Hybrid Coordinate Ocean Model (HYCOM) Reanalysis datasets—were used for the initial and boundary conditions for the oceanic component of the coupled model in three different simulations of TC Phailin. All the simulations showed a delay in intensification compared to the observation, and ECMWF simulated the most intensified TC. CFSV2 simulated a deeper mixed layer (ML) and higher mixing, which hindered the intensification. Furthermore, higher entrainment of cold water in the ML led to cold water reaching the surface and, consequently, decreased sea surface temperature, which acted as negative feedback in the intensification of the storm in the cases of CFSV2 and HYCOM. ECMWF realistically simulated the interactions of the TC with a cold-core eddy before landfall. A sudden increase in ML heat content, the addition of heat in the ML due to entrainment, and the prevention of cold water reaching the surface were indicative of the breaking of the barrier layer (BL) in ECMWF, which was further corroborated by the spatial distribution of BL thickness in the simulation. This acted as positive feedback in the intensification of the TC. The findings of this study strongly suggest that not only the incorporation of physical oceanic sub-surface processes in the modeling of TCs but also the proper representation of prevailing mesoscale features and ocean sub-surface temperature, salinity, and current profiles in datasets is essential for realistic simulations of TCs.

Publisher

MDPI AG

Subject

General Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3