An Approach to Task Representation Based on Object Features and Affordances

Author:

Gajewski PaulORCID,Indurkhya BipinORCID

Abstract

Multi-purpose service robots must execute their tasks reliably in different situations, as well as learn from humans and explain their plans to them. We address these issues by introducing a knowledge representation scheme to facilitate skill generalization and explainability. This scheme allows representing knowledge of the robot’s understanding of a scene and performed task. We also present techniques for extracting this knowledge from raw data. Such knowledge representation and extraction methods have not been explored adequately in previous research. Our approach does not require any prior knowledge or 3D models of the objects involved. Moreover, the representation scheme is easy to understand for humans. The system is modular so that new recognition or reasoning routines can be added without changing the basic architecture. We developed a computer vision system and a task reasoning module that works with our knowledge representation. The efficacy of our approach is demonstrated with two different tasks: hanging items on pegs and stacking one item on another. A formalization of our knowledge representation scheme is presented, showing how the system is capable of learning from a few demonstrations.

Funder

Polish National Agency for Academic Exchange

Priority Research Area DigiWorld PSP

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of Computational Model from a Psychological and Neurophysiological Perspective;Journal of Biomedical and Sustainable Healthcare Applications;2023-01-05

2. Models and Computational Theories of Human Cognition From a Psychological and Neurophysiological Perspective;Journal of Biomedical and Sustainable Healthcare Applications;2022-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3