An Evaluation of Microfiltration and Ultrafiltration Pretreatment on the Performance of Reverse Osmosis for Recycling Poultry Slaughterhouse Wastewater

Author:

Fatima Faryal1,Fatima Sana1,Du Hongbo1ORCID,Kommalapati Raghava Rao2ORCID

Affiliation:

1. Center for Energy and Environmental Sustainability, Prairie View A&M University, Prairie View, TX 77446, USA

2. Center for Energy and Environmental Sustainability, Department of Civil and Environmental Engineering, Prairie View A&M University, Prairie View, TX 77446, USA

Abstract

To implement sustainable water resource management, the industries that produce a huge amount of wastewater are aiming to recycle wastewater. Reverse osmosis (RO) is an advanced membrane process that can produce potable water from wastewater. However, the presence of diverse pollutants in the wastewater necessitates effective pretreatment to ensure successful RO implementation. This study evaluated the efficiency of microfiltration (MF) and ultrafiltration (UF) as two pretreatment methods prior to RO, i.e., MF-RO and UF-RO, for recycling poultry slaughterhouse wastewater (PSWW). The direct treatment of PSWW with RO (direct RO) was also considered for comparison. In this study, membrane technology serves as a post treatment for PSWW, which was conventionally treated at Sanderson Farm. The results demonstrated that all of the processes, including MF-RO, UF-RO, and direct RO treatment of PSWW, rejected 100% of total phosphorus (TP), over 91.2% of chemical oxygen demand (COD), and 87% of total solids (TSs). Total nitrogen (TN) levels were reduced to 5 mg/L for MF-RO, 4 mg/L for UF-RO, and 9 mg/L for direct RO. In addition, the pretreatment of PSWW with MF and UF increased RO flux from 46.8 L/m2 h to 51 L/m2 h, an increase of approximately 9%. The product water obtained after MF-RO, UF-RO, and direct RO meets the required potable water quality standards for recycling PSWW in the poultry industry. A cost analysis demonstrated that MF-RO was the most economical option among membrane processes, primarily due to MF operating at a lower pressure and having a high water recovery ratio. In contrast, the cost of using RO without MF and UF pretreatments was approximately 2.6 times higher because of cleaning and maintenance expenses related to fouling. This study concluded that MF-RO is a preferable option for recycling PSWW. This pretreatment method would significantly contribute to environmental sustainability by reusing well-treated PSWW for industrial poultry purposes while maintaining cost efficiency.

Funder

USDA-National Institute of Food and Agriculture

National Science Foundation CREST Center

Publisher

MDPI AG

Reference48 articles.

1. Membrane Technology for Sustainable Water Resources Management: Challenges and Future Projections;Issaoui;Sustain. Chem. Pharm.,2022

2. Treatment of Cauliflower Processing Wastewater by Nanofiltration and Reverse Osmosis in View of Recycling;Garnier;J. Food Eng.,2022

3. Advanced Technologies for Poultry Slaughterhouse Wastewater Treatment: A Systematic Review;Baker;J. Dispers. Sci. Technol.,2020

4. (2023, September 25). Optimizing Water Reuse in Meat and Poultry Processing. Available online: https://www.watertechonline.com/water-reuse/article/14223701/optimizing-water-reuse-in-meat-and-poultry-processing.

5. Maggie, N., Bingoa, M.B., and Ntwampea, S.K.O. (2019, January 18–19). Poultry Slaughterhouse Wastewater Treatment Plant Design Advancements. Proceedings of the 16th SOUTH AFRICA Int’l Conference on Agricultural, Chemical, Biological & Environmental Sciences, Johannesburg, South Africa.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3