Separation and Characterization of Nickel Hydroxide from Waste Solution Using Ca(OH)2 Precipitation in Chloride Media

Author:

Mabowa Mothepane Happy12ORCID,Mkhohlakali Andile1ORCID,Chimuka Luke2ORCID,Tshilongo James12ORCID

Affiliation:

1. Analytical Chemistry Division, MINTEK, 200 Malibongwe Drive, Randburg 2155, South Africa

2. School of Chemistry, University of the Witwatersrand, Private Bag x3, Johannesburg 2050, South Africa

Abstract

Nickel hydroxide (Ni(OH)2) is a valuable compound derived from nickel, widely utilized across various fields because of its versatile properties. This study aimed to characterize as-prepared β-Ni(OH)2 via chemical precipitation using various analytical techniques. X-ray diffraction (XRD) analysis confirmed the formation of a β-Ni(OH)2 hexagonal crystalline structure, validating the successful precipitation. Fourier-transform infrared spectroscopy (FTIR) spectra exhibited main characteristic peaks of (υOH) and υ(NiO), corresponding to the formation of nickel hydroxide (Ni(OH)2). Subsequently, X-ray photoelectron spectroscopy (XPS) revealed a prominent peak for Ni2+ oxidation, confirming the successful precipitation of nickel hydroxide at pH 6.5, which identifies the existence of impurities, such as chlorine and calcium, from the waste matrix. Scanning electron microscopy (SEM) micrographs demonstrated stratified granules with a nearly pure brucite crystalline phase, typical of β-Ni(OH)2. Furthermore, the surface morphology revealed a coarse texture and uneven clustering, suggesting possible elevated oxide levels on the Ni surface. Energy-dispersive X-ray spectroscopy (EDX) confirmed the presence of nickel (Ni) and oxygen (O), with Ca impurities attributed to the chemical precipitation process. Particle size distribution analysis estimated an average particle size of 2.0 µm. Additionally, the precipitation of nickel was investigated using inductively coupled plasma optical emission spectroscopy (ICP-OES). Ni was observed in decreasing order, 62.7 g/L, 0.8 g/L, and 0.501 g/L in the pregnant leach, precursor solution, and solid precipitate (cake), respectively. The separation of Ni(OH)2 through the precipitation process from the waste (acidic chloride media) enabled efficient recycling and re-use of nickel, which provides a cost-effective and environmentally friendly method for the highly efficient utilization of waste (acidic chloride media).

Funder

Mintek

Publisher

MDPI AG

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3