Enhancement of Photocatalytic Rhodamine B Degradation over Magnesium–Manganese Baring Extracted Iron Oxalate from Converter Slag

Author:

Chuaicham Chitiphon1ORCID,Trakulmututa Jirawat1,Shenoy Sulakshana1,Balakumar Vellaichamy2ORCID,Santawaja Phatchada3,Kudo Shinji3,Sekar Karthikeyan14ORCID,Sasaki Keiko1ORCID

Affiliation:

1. Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan

2. Department of Chemistry, Sri Ramakrishna College of Arts & Science, Coimbatore 641006, Tamil Nadu, India

3. Interdisciplinary Graduate School of Engineering Sciences, Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga 816-8580, Japan

4. Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India

Abstract

In this work, iron oxalate from converter slag (FeOX-Slag) was produced by extraction of iron from converter slag using oxalic acid, followed by photo-reduction. The FeOX-Slag sample was subjected to various characterization techniques, including X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), ultraviolet–visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence spectroscopy (PL), X-ray absorption near-edge structure spectroscopy (XANES), and X-ray photoelectron spectroscopy (XPS), in order to gain insights into its physicochemical properties. Also, to compare the photocatalytic activity of the FeOX-Slag, commercial iron oxide (Fe2O3) was used as a precursor to produce normal iron oxalate (FeOX-Fe2O3). The obtained FeOX-Slag was applied to the photocatalytic degradation of rhodamine B (RhB), a model organic contaminant in wastewater, compared with the FeOX-Fe2O3. Using the produced FeOX-Slag, we were able to degrade RhB more than 98% within 90 min at a reaction rate constant of about 3.6 times faster than FeOX-Fe2O3. Photoluminescence results confirmed the less recombination of the electron–hole pairs in FeOX-Slag, compared to FeOX-Fe2O3, which may be due to the defect structure of iron oxalate by guest metal impurities. The higher separation and transportation of photogenerated electron–hole pairs cause the enhancement of the degradation photocatalytic RhB degradation activity of the FeOX-Slag. In addition, The FeOX-Slag showed higher light absorption ability than FeOX-Fe2O3, resulting in the enhancement of the RhB degradation performance. Thus, the optical properties and the results from the activity tests led to the proposal that FeOX-Slag may be used in a photocatalytic degradation process for RhB under light irradiation.

Funder

Japan Society for the Promotion of Science (JSPS) KAKENHI

Grant-in-Aid for Early-Career Scientists

Advanced Research Infrastructure for Materials and Nanotechnology

Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan

2022 Research Start Program

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3