Author:
Han Qing,Wu Xiaoxiao,Cao Yi,Zhang Hua,Zhao Yuqin,Kang Xuejun,Zhu Huaiyuan
Abstract
A novel magnetic solid phase extraction based on mercaptophenylboronic acid (MPBA)-functionalized Fe3O4-NH2@Au nanomaterial (Fe3O4-NH2@Au-MPBA) was developed for selective separation and enrichment of catecholamines (including dopamine, norepinephrine and adrenaline). Fe3O4-NH2@Au-MPBA nanoparticles were achieved by self-assembly-anchoring MPBA molecules on the surface of Fe3O4-NH2@Au nanocomposites, which were synthesized via a facial ultrasonic auxiliary in situ reduction process. The interaction between cis-diol from catecholamines and boronic acid was reversible and could be flexibly controlled by adjusting pH value. The catecholamines could be quickly adsorbed by Fe3O4-NH2@Au-MPBA in weak alkaline solution (pH 8.0–9.0) and subsequently released in acid solution (pH 1.0–2.0). The process of adsorption and dissociation was very fast. Furthermore, the three catecholamines could be detected in urine from children by high performance liquid chromatography (HPLC) with electrochemical detector. Under optimal conditions, norepinephrine (NE), epinephrine (EP) and dopamine (DA) were separated very well from internal standard and exhibited a good linearity in the range of 2.5–500.0 ng mL−1, with correlation coefficients of r2 > 0.9907. Limits of detection (LOD) (signal to noise = 3) were 0.39, 0.27 and 0.60 ng mL−1 for NE, EP and DA, respectively. Recoveries for the spiked catecholamines were in the range of 85.4–105.2% with the relative standard deviation (RSD) < 11.5%.
Subject
Filtration and Separation,Analytical Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献