Matrix-Assisted 1H DOSY Applied to Flavonoid Analysis in Scutellaria baicalensis

Author:

You YulinORCID,Guo Dongxiao,Cui Weiliang,Wang Zhifan,Yang Chunguo,Lin YongqiangORCID,Wang ShuqiORCID

Abstract

Matrix-assisted diffusion-ordered spectroscopy (MA DOSY) technology enables efficient the virtual separation of components in a mixture according to their coefficients (D). In the current research, MA DOSY technology was applied for the analysis of a flavonoid mixture. To establish the method, five representative active flavonoid ingredients, including baicalein, baicalin, quercetin, puerarin and rutinum, were selected for the mixture model. The effects of the type and concentration of the matrix, solvent polarity, and nuclear magnetic resonance (NMR) experimental conditions on the resolution of the DOSY spectrum were investigated. It turned out that sodium dodecyl sulfate (SDS) showed the best performance in increasing the resolution of different analytes, which initially increased to the peak below the added amount of 9 mg, and decreased upon the addition of more SDS. In addition, the five flavonoids showed higher resolution in DMSO–d6 than in MeOD. Experimental parameters of DOSY, including the number of scans (NS), dummy scans (DS), and value of the FID data points (TD), were also optimized. Finally, the above optimized method was used for the qualitative analysis of the total flavonoid mixture extracted from Scutellaria baicalensis Georgi. A total of nine compounds were identified and confirmed by comparing them with mass spectrometry data, which further verifies the practical value of this method upon analyzing flavonoid mixtures and provides some reference significance for the follow-up research.

Funder

Shandong Province Major Scientific and Technological Innovation Project

Program of Shandong University

Natural Science Foundation of Shandong Province of China

Instrument Improvement Funds of Shandong University Public Technology Platform

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3