Adsorption of Orange G in Liquid Solution by the Amino Functionalized GO

Author:

Yang ZhiquanORCID,He Chong,Liao Wenning,Zhang Xinyi,Liu Wanhui,Zou Baosheng

Abstract

Dye effluent damaged the water environment and human health with its massive discharge. In order to eliminate dye from the water environment, a variety of adsorbents were used to investigate dye removal. Graphene oxide (GO) attracted extensive attention due to its excellent surface property in the degradation of dye wastewater. Modified GO with multifunctional groups helped to improve adsorption performance. 3-Aminopropyltriethoxysilane modified GO (AS-GO) was fabricated for the removal of Orange G (OG) in this study. The results showed that AS-GO had an excellent adsorption ability of OG. During the reaction process, the maximum adsorptive capacity of OG was up to 576.6 mg/g at T = 313 K and pH = 3 with the initial OG concentration of 100 mg/L and the initial adsorbent dose of 2.5 g/L. The adsorption kinetic process of AS-GO conformed to the pseudo-second-order and Langmuir models. The spontaneous and endothermic adsorption of OG occurred in the adsorption process. The main adsorption mechanisms were electrostatic, π–π and hydrogen bonding interactions in the reaction process. After four cycles of AS-GO, it maintained high removal efficiency owing to its remarkable stability. The scheme of GO modified with AS could hinder the agglomeration of GO and provide more active sites, which would further enhance the adsorption properties and expand its application in water purification.

Funder

Fundamental Research Funds and National Natural Science Foundation of China

Open Project of State Key Laboratory of Urban Water Resources and Environment

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3