Abstract
The inherent strong hydrophobicity of Polytetrafluoroetylene (PTFE) microfiltration membranes results in low separation efficiency and easy contamination. In order to enhance its hydrophilic and antifouling properties, we first modified the PTFE microfiltration membrane by using Polyethylene glycol laurate (PEGML) for first layer deposition and then used Polyvinyl alcohol (PVA)/citric acid (CA) cross-linked coatings for second layer deposition. The Scanning Electron Microscope (SEM) results showed that the fibers and nodes of the modified PTFE microfiltration membrane were coated with PVA/CA hydrophilic coating. FT-IR Spectromete and X-ray photoelectron spectrometer (XPS) analysis results confirmed that crosslinking of PVA and CA occurred and that PEGML and PVA/CA were successfully deposited onto the membrane surface. The modification conditions were optimized by hydrophilicity testing, and the best hydrophilicity of the modified membrane was achieved when the crosslinking content of PEGML was 2 g·L−1, PVA was 5 g·L−1, and CA was 2 g·L−1. PTFE microfiltration membranes modified by the optimal conditions achieved a water flux of 396.9 L·m−2·h−1 (three times that of the original membrane) at low operating pressures (0.05 MPa), and the contact angle decreased from 120° to 40°. Meanwhile, the modified PTFE microfiltration membrane has improved contamination resistance and good stability of the hydrophilic coating.
Funder
Postgraduate Research & Practice Innovation Program of Jiangsu Province
National Natural Science Foundation of China
Subject
Filtration and Separation,Analytical Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献