Determination of Formaldehyde Yields in E-Cigarette Aerosols: An Evaluation of the Efficiency of the DNPH Derivatization Method

Author:

Jin Xiaohong C.,Ballentine Regina M.,Gardner William P.,Melvin Matt S.,Pithawalla Yezdi B.,Wagner Karl A.,Avery Karen C.,Sharifi MehranORCID

Abstract

Recent reports have suggested that (1) formaldehyde levels (measured as a hydrazone derivative using the DNPH derivatization method) in Electronic Nicotine Delivery Systems (ENDS) products were underreported because formaldehyde may react with propylene glycol (PG) and glycerin (Gly) in the aerosol to form hemiacetals; (2) the equilibrium would shift from the hemiacetals to the acetals in the acidic DNPH trapping solution. In both cases, neither the hemiacetal nor the acetal would react with DNPH to form the target formaldehyde hydrazone, due to the lack of the carbonyl functional group, thus underreporting formaldehyde. These reports were studied in our laboratory. Our results showed that the aerosol generated from formaldehyde-fortified e-liquids provided a near-quantitative recovery of formaldehyde in the aerosol, suggesting that if any hemiacetal was formed in the aerosol, it would readily hydrolyze to free formaldehyde and, consequently, form formaldehyde hydrazone in the acidic DNPH trapping solution. We demonstrated that custom-synthesized Gly and PG hemiacetal adducts added to the DNPH trapping solution would readily hydrolyze to form the formaldehyde hydrazone. We demonstrated that acetals of PG and Gly present in e-liquid are almost completely transferred to the aerosol during aerosolization. The study results demonstrate that the DNPH derivatization method allows for an accurate measurement of formaldehyde in vapor products.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Reference43 articles.

1. Monographs on the Identification of Carcinogenic Hazards to Humans,2012

2. Formaldehyde Resins Used in Industry, Manufacturing, and Construction;Chris,2010

3. Monographs on the Evaluation of Carcinogenic Risks to Humans: Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol,2006

4. Regulations Amending the Tobacco Reporting Regulations: SOR/2019-64;Can. Gaz.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3