Returning to Nature for the Design of Sorptive Phases in Solid-Phase Microextraction

Author:

Mafra Gabriela,García-Valverde María,Millán-Santiago Jaime,Carasek EduardoORCID,Lucena RafaelORCID,Cárdenas SoledadORCID

Abstract

Green analytical chemistry principles aim to minimize the negative impact of analytical procedures in the environment, which can be considered both at close (to ensure the safety of the analysts) and global (to conserve our natural resources) levels. These principles suggest, among other guidelines, the reduction/minimization of the sample treatment and the use of renewable sources when possible. The first aspect is largely fulfilled by microextraction, which is considered to be among the greenest sample treatment techniques. The second consideration is attainable if natural products are used as raw materials for the preparation of new extraction phases. This strategy is in line with the change in our production system, which is being gradually moved from a linear model (take–make–dispose) to a circular one (including reusing and recycling as key terms). This article reviews the potential of natural products as sorbents in extraction and microextraction techniques from the synergic perspectives of two research groups working on the topic. The article covers the use of unmodified natural materials and the modified ones (although the latter has a less green character) to draw a general picture of the usefulness of the materials.

Funder

Ministerio de Economía y Competitividad

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3