Preparation and NH4+ Adsorption Performance of Ultrafine Lignite-Based Porous Materials

Author:

Zhang Siyuan1,Fan Yuping1,Dong Xianshu1,Ma Xiaomin1ORCID,Yang Maoqing1,Xiao Wei1

Affiliation:

1. School of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

Abstract

This study aimed to increase the ammonium nitrogen adsorption capacity of lignite using ultrafine grinding, aiming to reduce eutrophication in water bodies. Ammonium sulfate (NH4)2SO4 was employed as a stand-in for ammonium nitrogen in water solutions. The lignite sample for adsorption was processed with varying milling times. Adsorption efficacy was assessed primarily through isothermal adsorption tests and other techniques. Additionally, the study delved into the adsorption mechanisms. The results demonstrate that lignite ground for 50 min follows monolayer adsorption, characterized by minimal pore size and reduced diffusion rates, thereby extending the time to reach equilibrium and maximizing adsorption. BET and SEM analyses show that coal powder is effectively ground by zirconia balls in a vertical stirring mill, diminishing its particle size and forming new micropores. Concurrently, larger native pores are transformed into mesopores and micropores, providing numerous sites for NH4+ adsorption. XPS and FTIR analyses indicate an increase in exposed carbonaceous surfaces and oxygen-containing functional groups in ultrafine lignite. Ammonium ions replace hydrogen in carboxyl groups to form COONH4, and hydrogen bonds may form between NH4+ and C-O groups. Additionally, the electrostatic attraction between NH4+ and the coal surface further enhances adsorption. It can be concluded that the physical grinding process increases the specific surface area and creates more active adsorption sites, which in turn, boosts NH4+ adsorption capacity. The maximum equilibrium adsorption capacity is as high as 550 mg/g. This study suggests that ultrafine lignite is a promising material for treating ammonia-nitrogen wastewater.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3