Research Progress on Process-Intensified Water Treatment Applications

Author:

Kopac TurkanORCID

Abstract

Process intensification (PI) is aimed towards essentially smaller, cleaner, safer, energy-efficient sustainable technologies involving the application of a number of strategies, including reducing the number of devices, miniaturization, process integration, improving mass and heat transfer, novel energy and separation techniques and combined optimization and control methodologies. Over the recent years, PI has attracted attention in the domain of aqueous medium adsorptive separations and wastewater treatment as well. Thus far, a limited number of investigations have appeared in the literature; in addition, there is yet a lack of published methods to follow the intensified solutions for processes in wastewater treatment. In this connection, this article aims to present an overview of the recent applications and advances in process-intensified decolorization of dyes; removal of aromatic hydrocarbons from wastewaters; and recovery of proteins, heavy metals and rare earth elements from aqueous media. Selected applications have been identified in terms of the PI techniques, and the corresponding process improvements have been discussed for a variety of examples with the aim of contributing to the future progress of applications. It has been confirmed that considerable process improvements could be possible, such as intensified process efficiency, improved adsorption and separation performance, and minimized sorbent requirement and processing time. Even though there have been considerable developments in the field, there is still a need for further developments for the enhancement of the technologies in adsorption wastewater treatment using a systems approach.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3