Remediation of Methyl Orange Dye in Aqueous Solutions by Green Microalgae (Bracteacoccus sp.): Optimization, Isotherm, Kinetic, and Thermodynamic Studies

Author:

Al Shra’ah Ahmad1,Al-Fawwaz Abdullah T.2ORCID,Ibrahim Mohammed M.1ORCID,Alsbou Eid3

Affiliation:

1. Department of Chemistry, Faculty of Science, Al al-Bayt University, P.O. Box 130040, Al-Mafraq 25113, Jordan

2. Department of Biological Sciences, Al al-Bayt University, P.O. Box 130040, Al-Mafraq 25113, Jordan

3. Department of Chemistry, Al-Hussein Bin Talal University, Ma’an P.O. Box 71111, Jordan

Abstract

This study aims to assess the ability of old, immobilized fresh, and free fresh green microalgae (a Bracteacoccus sp.) to remove methyl orange (MO) dye from aqueous solutions. The effects of four factors, including initial MO concentration (5–25 mg L−1), adsorbent dose (0.02–0.10 g mL−1), temperature (4–36 °C), and contact time (5–95 min), were examined. The Box–Behnken design (BBD) was used to determine the number of required experiments and the optimal conditions expected to provide the highest removal percentage of MO dye from aqueous solutions. The experimental data were applied to four isotherm models (Langmuir, Freundlich, Dubinin–Radushkevich (D–R), and Temkin isotherm models) and three kinetic models (pseudo–first–order, pseudo–second–order, and Elovich kinetic models). The results indicate that the highest removal of MO (97%) could be obtained in optimal conditions consisting of an initial MO concentration of 10.0 mg L−1, an adsorbent dose of 0.10 g mL−1, a temperature of 20 °C, and a contact time of 75 min. Moreover, the experimental data were best fitted by the Langmuir and Temkin isotherm models and followed a pseudo-second-order kinetic model. The interaction between MO and the Bracteacoccus sp. was confirmed by UV and ESI/MS analyses, indicating that MO removal occurred via both sorption and degradation processes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3