Effect of Hydrothermal Conditions on Kenaf-Based Carbon Quantum Dots Properties and Photocatalytic Degradation

Author:

Saafie Nabilah1ORCID,Sambudi Nonni2ORCID,Wirzal Mohd13ORCID,Sufian Suriati14ORCID

Affiliation:

1. Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

2. Department of Chemical Engineering, Universitas Pertamina, Daerah Khusus Ibukota Jakarta 12220, Indonesia

3. Center of Research in Ionic Liquids (CORIL), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

4. Center of Innovative Nanostructures and Nanodevices (COINN), Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

Abstract

The development of biomass-based CQD is highly attentive to enhancing photocatalytic performance, especially in secondary or ternary heterogeneous photocatalysts by allowing for smooth electron-hole separation and migration. In this study, kenaf-based carbon quantum dots (CQD) were prepared. The main objective of the current work was to investigate temperature, precursor mass and time in hydrothermal synthesis treatment to improve the CQD properties and methylene blue photocatalytic degradation. Optimization of kenaf-based CQD for inclusion in hydrothermal treatment was analyzed. The as-prepared CQDs have been characterized in detail by Fourier transform infrared (FTIR) spectroscopy, high-resolution transmission electron microscope (HRTEM), photoluminescence (PL) and ultraviolet–visible (UV–Vis) spectroscopy. It was found that C200-0.5-24 exhibits a higher photocatalytic activity of the methylene blue dye and optimized hydrothermal conditions of 200 °C, 0.5 g and 24 h. Therefore, novel kenaf-based CQD was synthesized for the first time and was successfully optimized in the as-mentioned conditions. During the hydrothermal treatment, precursor mass controls the size and the distribution of CQD nanoparticles formed. The C200-0.5-24 showed a clearly defined and well-distributed CQD with an optimized nanoparticle size of 8.1 ± 2.2 nm. Indeed, the C200-0.5-24 shows the removal rate of 90% of MB being removed within 120 min.

Funder

FRGS

YUTP

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3