Assessments of Organic Carbon Stabilization Using the Spectroscopic Characteristics of Humic Acids Separated from Soils of the Lena River Delta

Author:

Polyakov VyacheslavORCID,Abakumov EvgenyORCID

Abstract

In the Arctic zone, where up to 1024 × 1013 kg of organic matter is stored in permafrost-affected soils, soil organic matter consists of about 50% humic substances. Based on the analysis of the molecular composition of humic acids, we assessed the processes of accumulation of the key structural fragments, their transformations and the stabilization rates of carbon pools in soils in general. The landscape of the Lena River delta is the largest storage of stabilized organic matter in the Arctic. There is active accumulation and deposition of a significant amount of soil organic carbon from terrestrial ecosystems in a permafrost state. Under ongoing climate change, carbon emission fluxes into the atmosphere are estimated to be higher than the sequestration and storing of carbon compounds. Thus, investigation of soil organic matter stabilization mechanisms and rates is quite an urgent topic regarding polar soils. For study of molecular elemental composition, humic acids were separated from the soils of the Lena River delta. Key structural fragments of humic matter were identified and quantified by CP/MAS 13C NMR spectroscopy: carboxyl (–COOR); carbonyl (–C=O); CH3–; CH2–; CH-aliphatic; –C-OR alcohols, esters and carbohydrates; and the phenolic (Ar-OH), quinone (Ar = O) and aromatic (Ar–) groups as benchmark Cryosols of the Lena delta river terrestrial ecosystem. Under the conditions of thermodynamic evolutionary selection, during the change between the dry and wet seasons, up to 41% of aromatic and carboxyl fragments accumulated in humic acids. Data obtained showed that three main groups of carbon played the most important role in soil organic matter stabilization, namely C, H-alkyls ((CH2)n/CH/C and CH3), aromatic compounds (C-C/C-H, C-O) and an OCH group (OCH/OCq). The variations of these carbon species’ content in separated humics, with special reference to soil–permafrost organic profiles’ recalcitrance in the current environment, is discussed.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Reference65 articles.

1. Soil Atlas of the Northern Circumpolar Region, European Commission;Jones,2010

2. Permafrost: A Guide to Frozen Ground in Transition;Davis,2001

3. Potential carbon release from permafrost soils of Northeastern Siberia

4. Terrestrial ecosystems and the carbon cycle

5. Organic carbon and total nitrogen stocks in soils of the Lena River Delta

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3