Molecular Simulations of the Gas Diffusion through the Two-Dimensional Graphyne Membrane

Author:

Jin Dongliang1ORCID,Zhang Tao1,Guo Meng1ORCID,Wu Nanhua1,Zhong Jing1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

Abstract

Owing to the unified and tunable pore size, two-dimensional graphyne membranes show excellent performance in the realm of gas transport and separations. The impacts of environmental conditions on the pore size of a porous membrane are ignored in previous studies. Using molecular modeling techniques, we here probe the accessible pore size of the γ-graphyne membrane under various pressure and temperature conditions. First, by assessing the gas permeation through the two-dimensional γ-graphyne membrane at a constant temperature, the accessible pore size of this membrane is shown to be proportional to the driving force—the pressure difference between the two sides of the porous membrane. Such a driving force dependence is found to be well described by a simple asymptotic model. Then, by determining such pressure dependence at two different temperatures, temperature is found to show a weak influence on the accessible pore size. Finally, by considering the binary mixed gases of various mole fractions, the accessible pore size measured using one of the two species is shown to be dependent on its partial pressure difference. These findings for the accessible pore size, which highlight the tunable pore size by altering the driving force, can be expected to provide a practical strategy to rationalize/refine the pore size of the porous membrane for gas transport and separations, especially for two molecules with similar diameters.

Funder

National Key Research and Development Program of China

International Joint Lab of Jiangsu Education Department, the Changzhou Sci&Tech Program

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Changzhou University

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3