Green Synthesis of Magnetite Nanoparticles Mediated Fumaria officinalis L. Plant as Sustainable and Renewable Adsorbing Materials

Author:

Haji Akram A.1ORCID,Abduljabar Rihan S.2,Yasin Suhad A.3ORCID,Omar Zagros A.245ORCID,Ahmed Hozan A.6,Assiri Mohammed A.7,Ali Gomaa A. M.8ORCID

Affiliation:

1. Department of Chemistry, College of Science, University of Zakho, Duhok 42001, Iraq

2. Department of Phytochemistry, SRC, Soran University, Soran 44008, Iraq

3. Department of Chemistry, College of Science, University of Duhok, Duhok 42001, Iraq

4. Department of Chemistry, Faculty of Science, Soran University, Soran 44008, Iraq

5. Department of Pharmacy, Rawandz Private Technical Institute, Soran 44008, Iraq

6. Pharmacy Department, Technical Institute Duhok, Duhok Polytechnic University, Duhok 42001, Iraq

7. Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia

8. Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt

Abstract

Magnetite nanoparticles (Fe3O4) have been utilized to mediate Fumaria officinalis L., a plant known for its rich source of various phytogredients such as diterpenes, nor-diterpenoids, tri-terpenoids, flavonoids, and phenolic acids. These natural compounds act as capping, reducing, and stabilizing agents, offering an affordable and safer approach to synthesize nanoparticles in line with sustainable and eco-friendly concepts, such as green nanoparticles. The cost-effective synthesized nanoparticles were employed to adsorb Pb(II) from an aqueous solution. For investigating the surface characteristics of the adsorbent, a range of techniques were employed, including Field Emission Scanning Electron Microscope (FE-SEM), Fourier Transform Infrared Spectroscopy, and X-ray Diffraction. Fourier Transform Infrared (FT-IR) spectroscopy was specifically applied to discern the functional groups present within the compounds. To optimize the adsorption process and achieve the best removal efficiency (R%), several parameters, including pH, initial concentration, temperature, and contact time, were optimized using the Response Surface Methodology (RSM). The experimental results indicated that the Langmuir isotherm provided a well-fitted model, suggesting a monolayer of Pb(II) capping on the surface of magnetite nanoparticles, with a maximum adsorption capacity of 147.1 mg/g. Moreover, the kinetic findings demonstrated a strong alignment with the pseudo-second-order model. The computed (qe) and observed outcomes associated with the pseudo-second-order kinetic model exhibited a commendable concurrence, underscoring the model’s remarkable precision in forecasting the adsorption mechanism of Pb(II) within the examined parameters. The antioxidant activity and green nanocomposite properties were determined using 1,1-diphenyl-2-picrylhydrazyl (DPPH) and standard analytical methods. The phytochemical profile exhibited a total phenolic content of 596 ± 0.001 mg GAE/g dry weight and a total flavonoid content of 18.25 ± 0.001 mg QE/g dry weight. The DPPH radical’s inhibition showed potent antioxidant activity at various concentrations (44.74, 73.86, 119.791, and 120.16% at 200, 400, 600, and 800 μg/mL, respectively), demonstrating the potential of the plant as a natural capping and reducing agent during the green process of nanoparticle formation.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3