Optimizing Membrane Distillation Performance through Flow Channel Modification with Baffles: Experimental and Computational Study

Author:

Zhang Yaoling1ORCID,Mu Xingsen1,Sun Jiaqi1,Guo Fei1ORCID

Affiliation:

1. School of Energy and Power Engineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China

Abstract

It has been identified that temperature polarization and concentration polarization are typical near-surface phenomena limiting the performance of membrane distillation. The module design should allow for effective flow, reducing the polarization effects near the membrane surfaces and avoiding high hydrostatic pressure drops across and along the membrane surfaces. A potential route to enhancing the membrane distillation performance is geometry modification on the flow channel by employing baffles as vortex generators, reducing the polarization effects. In this work, various baffles with different structures were fabricated by 3D printing and attached to the feed flow channel shell in an air gap membrane distillation module. The hydrodynamic characteristics of the modified flow channels were systematically investigated via computational fluid dynamics simulations with various conditions. The membrane distillation tests show that adding the baffles to the feed channel can effectively increase the transmembrane flux. The transmembrane flux with rectangular baffles and shield-shaped baffles increases by 21.8% and 28.1% at the feed temperature of 70 °C. Moreover, the shield-shaped baffles in the flow channel not only enhance the transmembrane flux but also maintain a low-pressure drop, making it even more significant.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3