Filter Modified with Hydrophilic and Oleophobic Coating for Efficient and Affordable Oil/Water Separation

Author:

Ross Hunter,Nguyen Huyen,Nguyen Brian,Foster Ashton,Salud James,Patino Mike,Gan Yong X.ORCID,Li MinghengORCID

Abstract

To mitigate the damage of oil spills, a filter modified with a hydrophilic and oleophobic coating is proposed for affordable and efficient oil separation and recovery from water. The sol–gel method was chosen to produce a colloidal suspension of titanium dioxide particles for its ease of production and its versatility in application for many different substrates, including paper and cloth fabric. After immersing the substrates into a titanium-containing solution, three techniques were applied to increase the production of titanium dioxide—microwave-assisted, refrigeration, and ultra-sonication. Contact angle tests were done to investigate the change in the filter’s oleophobicity. The titanium dioxide present on the surface of the filter was amorphous, but all treatment methods showed an improvement in oleophobicity. All treated filters improved oil filtration performance by up to eighty percent. The filters isolated motor oil from a mixture while allowing water to pass through. The coated filters also displayed photocatalytic activity by degrading methylene blue on its surface when exposed to sunlight, demonstrating the filter’s self-cleaning ability. For real-world applications, the filter can be supported by a stainless mesh for enhanced strength and durability. While being dragged through the water, the filter collects the surface oil, allowing water to pass through via gravity.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Reference43 articles.

1. City of Huntington Beach, California;Huntington Beach 2022 Water Quality Report

2. United States Environmental Protection Agency;Office of Emergency and Remedial Response, Agency Response PB2000-963401 Oil Program Center Understanding Oil

3. How Do Oil Spills out at Sea Typically Get Cleaned Up? National Oceanic and Atmospheric Administration;Office of Response and Restoration

4. Photoinduced Amphiphilic Surface on Polycrystalline Anatase TiO2 Thin Films

5. Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3