Comparative Prediction of Gas Chromatographic Retention Indices for GC/MS Identification of Chemicals Related to Chemical Weapons Convention by Incremental and Machine Learning Methods

Author:

Kireev Albert,Osipenko SergeyORCID,Mallard GaryORCID,Nikolaev Evgeny,Kostyukevich Yury

Abstract

During on-site verification activities conducted by the Technical Secretariat of Organization for the Prohibition of Chemical Weapons, identification by gas chromatography retention indices (RI) data, in addition to mass spectrometry data, increase the reliability of factual findings. However, reference RIs do not cover all the possible chemical structures. That is why it is important to have models to predict RIs. Applicable only for narrow data sets of chemicals with a fixed scaffold (G- and V-series gases as example), the non-learning incremental method demonstrated predictive median absolute and percentage errors of 2–4 units and 0.1–0.2%; these are comparable with the experimental bias in RI measurements in the same laboratory with the same GC conditions. It outperforms the accuracy of two reported machine learning methods–median absolute and percentage errors of 11–52 units and 0.5–2.8%. However, for the whole Chemical Weapons Convention (CWC) data set of chemicals, when a fixed scaffold is absent, the incremental method is not applicable; essential machine learning methods achieved accuracy: median absolute and percentage errors of 29–33 units and 0.5–2.2%, depending on the machine learning method. In addition, we have developed a homology tree approach as a convenient method for the visualization of the CWC chemical space. We conclude that non-learning incremental methods may be more accurate than the state-of-the-art machine learning techniques in particular cases, such as predicting the RIs of homologues and isomers of chemicals related to CWC.

Funder

Russian Scientific Foundation

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3