Identification of Photodegradation Products of Escitalopram in Surface Water by HPLC-MS/MS and Preliminary Characterization of Their Potential Impact on the Environment

Author:

Termopoli Veronica,Consonni VivianaORCID,Ballabio DavideORCID,Todeschini Roberto,Orlandi MarcoORCID,Gosetti FabioORCID

Abstract

The study concerns the photodegradation of the antidepressant escitalopram (ESC), the S-enantiomer of the citalopram raceme, both in ultrapure and surface water, considering the contribution of indirect photolysis through the presence of nitrate and bicarbonate. The effect of nitrate and bicarbonate concentrations was investigated by full factorial design, and only the nitrate concentration resulted in having a significant effect on the degradation. The kinetics of ESC photodegradation is the pseudo-first-order (half-life = 62.4 h in ultrapure water and 48.4 h in lake water). The generation of transformation products (TPs) was monitored through a developed and validated HPLC-MS/MS method. Fourteen TPs were identified in ultrapure water (one of them, at m/z 261, for the first time) and other two TPs at m/z 327 (found for the first time in this study) were identified only in presence of a nitrate. Several TPs were the same as those formed during the photodegradation of citalopram. The photodegradation pathway of ESC and its mechanism of degradation in water is proposed. The method was applied successfully to the analyses of surface water samples, in which a few dozen of ng L−1 of ESC was determined together with the presence of TP2, TP5 and TP12. Finally, a preliminary in silico evaluation of the toxicological profile and environmental behavior of TPs by computational models was carried out; two TPs (TP4 and TP10) were identified as of potential concern, as they were predicted mutagenic by Ames test model.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3