Antimycobacterial Activity of Rosmarinus officinalis (Rosemary) Extracted by Deep Eutectic Solvents

Author:

Dheyab Ali SamiORCID,Kanaan Mohammed QahtanORCID,Hussein Nabeel Abood,AlOmar Mohamed KhalidORCID,Sabran Siti Fatimah,Abu Bakar Mohd FadzellyORCID

Abstract

Tuberculosis (TB) is a massive problem for public health and is the leading cause of illness and death worldwide. Rosemary (Rosmarinus officinalis) is used traditionally to treat many diseases, such as infections of the lungs including pulmonary TB. R. officinalis was collected from Al Anbar Governorate, Iraq, and was extracted with deep eutectic solvents (DESs) of many different kinds and with conventional water solvent. The antimycobacterial activities of the R. officinalis extracts were tested against multidrug-resistant (MDR) Mycobacterium tuberculosis by agar disc diffusion assay. Minimum inhibitory concentrations were measured spectrophotometrically at 570 nm. Then, a time-kill assay and cell membrane integrity analysis were conducted to investigate the effects of the most active extracts on cell growth. The in vitro cytotoxicity of the most active extracts was evaluated against Rat Embryonic Fibroblasts (REF) cell line by MTT assay. Liquid chromatography-mass spectrometry (LC-MS) was conducted to analyze the chemical components of the most active extracts. At 200 mg/mL concentration, a significant inhibition activity was seen in DES2: Tailor (DIZ = 17.33 ± 1.15 mm), followed by DES3: ChGl, DES1: LGH and DES4: ChXl. The best result was DES2: Tailor, which had a MIC of 3.12 mg/mL and an MBC of 12.5 mg/mL. The DES2 extract exhibited a high drop in the number of colonies over time, killing more than 80 colonies. The main phytochemical compounds of the R. officinalis extract were camphene, camphenilol, α-pinene, limonene, apigenin, camphor, carnosol, linalool and myrcene. R. officinalis extracts obtained by DESs have shown evident power in treating tuberculosis, and extraction by DES is a greener procedure than the methods involving conventional extraction solvents. As a result, additional research into the application of DES should be considered.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3