Determination of the Relationship between the Granulometry and Release of Polyphenols Using LC-UV, and Their Antioxidant Activity of the Pulp Powder of the Moroccan Argan Tree, “Argania spinosa L.”

Author:

Mourjane Ayoub12,Hanine Hafida1,El Adnany El Mustapha2,Ouhammou Mourad2,Bitar Khalid3,Mahrouz Mostafa2ORCID,Boumendjel Ahcene4ORCID

Affiliation:

1. Industrial and Surface Engineering Laboratory, Faculty of Science and Technics, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco

2. Laboratory of Material Sciences and Process Optimization, Faculty of Science Semlalia, University Cadi Ayyad, Marrakech 40000, Morocco

3. IRCOS Laboratory, QI Al-Massar, Marrakesh 40000, Morocco

4. Department of Pharmacy, University of Grenoble Alpes, INSERM, LRB, 38000 Grenoble, France

Abstract

The bioavailability of cosmetic, pharmaceutical, nutraceutical, and food preparations depends, among other factors, on the galenic form and the control of the granulometric structure of powders. The present study aimed to evaluate the effect of argan pulp powder particle size on functional, physicochemical properties, and antioxidant bioactivity. The particle size study revealed a unimodal particle volume distribution, explaining the regular particle shape. The results relating to functional properties indicated that the critical fraction was in the range of 50–125 µm. However, the study of the particles in each class, evaluated via SEM, showed that the morphology of the pulp powder was strongly dependent on the degree of grinding. The classes in the range of 50–125 µm had the highest polyphenol content, while those of <25 µm had the highest flavonoid content (893.33 mg GAE/100 g DW and 128.67 mg CE/100 g DW, respectively). Molecular analysis via LC and GC-MS showed that particle size had a significant effect on the release of bioactive molecules. ABTS, DPPH, and TAC tests showed that the fraction, ‘‘50–125 µm’’, had the highest antioxidant activity. However, the FRAP test showed highest antioxidant activity for particles of <25 µm. The analysis of the bioactive compounds of the argan pulp powder confirmed a differential distribution, depending on the size of the particles.

Funder

Centre National de la Recherche Scientifique et Technique

Moroccan Ministry of Higher Education, Scientific Research and Vocational Training

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3