Effect of Na+ on the Adsorption Behavior of Polystyrene Nanoparticles onto Coal and Quartz Surfaces

Author:

Sun Yujin12,Jiang Ning13,Dong Xianshu1ORCID,Fan Yuping1,Yang Maoqing1,Xiong Peng1,Chen Yuran4

Affiliation:

1. College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China

2. State Key Laboratory of Mineral Processing, Beijing 100160, China

3. Tongling Nonferrous Metals Group Holding Company Limited, Tongling 244000, China

4. School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

The recovery of difficult-to-float coal using traditional nonpolar hydrocarbon oil collectors can be challenging, particularly for low-rank or oxidized coal. Thus, there is a need for more efficient flotation agents. Nanoparticle flotation collector technology has become increasingly popular in the field of mineral processing, and the presence of various ions in the slurry can significantly affect the interaction between collectors and mineral surfaces. In this study, cationic polystyrene (PS) nanoparticles were prepared using an emulsion polymerization method, and the effects of Na+ ion concentration on the in situ adsorption and desorption processes, adsorption layer configuration, and adsorption kinetics of PS particles on amorphous carbon (coal model) and SiO2 sensors (quartz mineral model) were analyzed using the quartz crystal microbalance with dissipation (QCM-D) technique. Our results showed that the hydrophobic PS nanoparticles irreversibly adsorbed onto both amorphous carbon and SiO2 sensors under different environmental conditions, and their adsorption capacity decreased gradually with increasing Na+ ion concentration. Increasing Na+ ion concentration from 0 M to 1.0 M resulted in a 24.4% and 30.9% decrease in equilibrium adsorption capacities of PS nanoparticles onto amorphous carbon and SiO2 surfaces, respectively. The adsorption rate of PS nanoparticles onto the SiO2 surface was much greater than that on the amorphous carbon surface. The adsorption rate constant of PS nanoparticles onto SiO2 surfaces was 0.782 at 0.1 M Na+ ion concentration, while its adsorption rate constant onto amorphous carbon surfaces was only 0.060. Moreover, the adsorption process was found to be more in line with the quasi-primary kinetic model. These findings suggest that PS nanoparticles may serve as promising flotation collectors for the recovery of difficult-to-float coal, and highlight the importance of considering the effect of dissolved ions on the adsorption properties of flotation collectors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Henan

Open Foundation of State Key Laboratory of Mineral Processing

Shanxi Scholarship Council of China

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3