Efficient Photocatalytic Degradation of Triclosan and Methylene Blue by Synthesized Ag-Loaded ZnO under UV Light

Author:

Chems Myriam1ORCID,González-Fernández Lázaro Adrián2ORCID,Sanchez Polo Manuel3ORCID,Anouar Abdellah1,Castillo Ramos Ventura3ORCID

Affiliation:

1. Laboratory of Applied Chemistry and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, Settat 26000, Morocco

2. Multidisciplinary Graduate Program in Environmental Sciences, Av. Manuel Nava 201, 2nd Floor, University Zone, San Luis Potosi 78000, Mexico

3. Department of Inorganic Chemistry, Faculty of Science, University of Granada, 18071 Granada, Spain

Abstract

Industrial discharge of hazardous organic and synthetic chemicals, such as antibacterials and dyes, poses severe risks to human health and the environment. This study was conducted to address the urgent need for efficient and stable zinc-oxide-based photocatalysts to degrade such pollutants. A novel approach to synthesizing silver-loaded zinc oxide (Ag@Z) catalysts was introduced by using a simple and efficient combination of hydrothermal and precipitation methods. Comprehensive characterization of Ag@Z photocatalysts was performed using XRD, XPS, Raman, UV–vis adsorption, FTIR, and SEM, revealing an enhancement of structural, optical, and morphological properties in comparison to pure zinc oxide. Notably, the 5%Ag@Z catalyst exhibited the highest degradation efficiency among the other synthesized catalysts under UV-C light irradiation, and enhanced the degradation rate of pure zinc oxide (Z) by 1.14 and 1.64 times, for Triclosan (TCS) and Methylene Blue (MB), respectively. the effect of catalyst dose and initial concentration was studied. A mechanism of degradation was proposed after investigating the effect of major reactive species. The 5%Ag@Z catalyst increased the photostability, which is a major problem of zinc oxide due to photocorrosion after reusability. We found that 50% and 74% of energy consumption for the photocatalytic degradation of TCS and MB by 5%Ag@Z, respectively, was saved in compassion with zinc oxide. The remarkable photocatalytic performance and the good recovery rate of Ag@Z photocatalysts demonstrate their high potential for photocatalytic degradation of organic contaminants in water.

Funder

EU Commission

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3