Affiliation:
1. Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Beethovenstraße 8, 8010 Graz, Austria
2. Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Universitätsplatz 1, 8010 Graz, Austria
Abstract
Spilanthol is a major N-alkylamide constituent of Acmella oleracea (L.) R.K. Jansen with diverse pharmacological properties. We recently showed the applicability of NADES (natural deep eutectic solvents) for the green extraction of spilanthol. However, the purification of targets from NADES poses a challenging step due to their non-volatility. A simple green method to retrieve spilanthol with minimal instrumental effort was devised, fractioning NADES (choline chloride/methylurea, choline chloride/1,2-propanediol, choline chloride/citric acid) and dry ethanolic extracts by SPE on C18 material, eluting merely with ethanolic solutions. The relative distribution of spilanthol and organic adulteration in SPE fractions were detected by HPLC-DAD, followed by scale-up, quantification and purity determination in an NMR-based approach. Isocratic elution with 52% ethanol (v/v) proved suitable in all experiments. The three purest 10 mL fractions combined yielded 12.21 mg spilanthol at 71.65% purity from NADES extract ChCl/P (choline chloride/1,2-propanediol, molar ratio 1:2, +20% m/m water). Ethanolic extract samples showed purities ranging from 77.27 to 80.27% in combined raw fractions. For all samples, purity increased by removing non-soluble substances from organic solutions. Pooled NADES extract fractions showed 89.71% in final samples, ethanolic extracts 87.25 to 91.93%. The highest purities of individual fractions per extract were 89.23 to 94.15%. This cheap and simple purification process is promising to acquire spilanthol for research purposes or as a sample preparation step before HPLC on a semi-preparative to preparative scale, as the substance is highly priced and scarcely available on the market. Organic solvents can be reused, and preliminary scale-up possibilities are shown.