Effect of Internal Vortex-Finder on Classification Performance for Double Vortex-Finder Hydrocyclone

Author:

Zhang YuekanORCID,Ge Jiangbo,Jiang LanyueORCID,Wang Hui,Duan Yaoxu

Abstract

The double vortex-finder hydrocyclone formed by a coaxial insertion of an internal vortex-finder with a smaller diameter inside the conventional single vortex-finder used to obtain two kinds of products from the internal and external overflows in one classification has attracted wide attention. To further improve the classification performance of the hydrocyclone, the effects of the internal vortex-finder diameter and length on the classification performance were studied by numerical simulation and response surface modeling with the behavior of fluid and particle motion in the double vortex-finder hydrocyclone as the research object. The results showed that the split ratio and pressure drop of internal and external overflow increased with the diameter of the internal vortex-finder. The classification performance was optimal when the diameter ratio of internal and external overflow was 0.88, the yield of −20 μm particles was more than 80.0%, and the highest was 95.0%. Increasing the internal vortex-finder length could reduce the coarse particle content and improve the classification accuracy of the internal overflow product. When the length of the internal vortex-finder is larger than 80 mm, the +30 μm yield was lower than 20.0%, and the maximum k value was 16.3%; the k is the significant factor used to characterize the effectiveness of −20 μm particle collection. The response surface modeling revealed that the internal vortex-finder diameter was the most important factor affecting the distribution rate of internal overflow. This paper is expected to advance the development of the classification industry.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3