A Novel Centrifugal Filtration Device

Author:

Lin Chia-Cheng,Wu Jung-MingORCID

Abstract

In the proposed centrifugal filtration device, a filter is mounted in the center of the centrifugal chamber. The particles move towards the centrifuge wall away from the filter under centrifugal force, so a filtration cake is unlikely to accumulate here. The working fluid is injected continuously, so the feed pressure is higher than the discharge pressure, which compels the light-phase fluid to leave through the filter as filtrate. The filtrate flux rate and the movement of particles in the centrifugal chamber of the proposed filtration device were investigated using different powder particle sizes, concentrations of working fluid, centrifugal chamber rotation speeds, and filters. With a higher centrifugal chamber rotation speed, the centrifugal force acting on the particles in the centrifugal chamber was stronger, and the particles were less likely to adhere to the central filter; hence, a larger amount of filtrate was produced.

Funder

Environmental Protection Administration of the Republic of China, Taiwan

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3