Investigation of Molecular Mean Free Path, Molecular Kinetic Energy, and Molecular Polarity Affecting Knudsen Diffusivity along Pore Channels

Author:

Xu BinORCID,Qin Haotian,Chen Lu

Abstract

The effective purification of corrosive gases at the cathode air stream side is essential for proton exchange membrane fuel cells’ performance in real-world applications. Gas molecular diffusion depth along the pore channel is a sufficient parameter that determines the effectiveness of the porous purification media. The collision between gas molecules and pore surfaces is the crucial determinant of the diffusion depth. An analytical model was developed to predict the gas molecular diffusion depth in the pore channels. Two different crystal sizes of UiO-66 were synthesized to validate against the model result and empirically determine the diffusion depths. The parametric effects of the mean free path, molecular kinetic energy, and molecular polarity on molecular diffusivity were assessed. A smaller molecular mean free path and greater molecular kinetic energy were favorable for larger diffusion depth, owing to the fewer collisions and enhanced bounces after collisions. Greater molecular polarity led to shorter diffusion depth due to the enhanced van der Waals force between molecules and pore surfaces.

Funder

National Key R&D Program of China

Natural Science Foundation of Shanghai

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3