Abstract
There are many advantages to using ionic liquids as solvents or catalysts in chemical processes. Their non-volatile characteristic and high cost, however, can pose economic, environmental, and long-term health concerns. As such, the recovery and recycling of ionic liquids have become essential to mitigate their environmental impact and to reduce costs. Numerous recovery and recycling methods have been reported, including distillation, extraction, membrane separation (a.k.a. filtration), adsorption, crystallization, gravity, and electrochemical separation. Whereas most of these methods recover both cations and anions of the ionic liquid as ion pairs, recycling methods such as single-phase ion exchange or mixed-ion exchange/non-ionic adsorption methods recover only one of the ionic liquid ions, typically the cation. These methods are frequently used for the recycling of ionic liquids having simple anions such as chloride or acetate, but are seldom employed for ionic liquids consisting of larger and more complex anions due to the added time and reagent costs necessary for the regeneration of the original ionic liquid. Herein, a combined cation and anion exchange adsorption-desorption method is presented that can effectively separate 1,2-dimethyl-3-propylimidazolium bis(trifluoromethylsulfonimide) [DMPIm][NTf2] ionic liquid from neutral impurities. More importantly, the method is capable of recovery and recycling of the original ionic liquid. Concomitant desorption of both ionic liquid ions was achieved using 0.1 M NaCl: methanol (90:10 v/v) eluent followed by isolation using liquid–liquid extraction to afford high purity products and yields of approximately 60%.
Funder
Air Force Office of Scientific Research
Subject
Filtration and Separation,Analytical Chemistry
Reference54 articles.
1. Ueber die Molekulargrösse und electrische Leitfähigkeit einiger geschmolzenen Salze;Walden;Bulletin de l’Academie Imperiale des Sciences de St. Petersbourg,1914
2. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis
3. Ionic Liquids in Chemical Analysis;Koel,2009
4. Tetraalkylphosphonium-based ionic liquids
5. Introduction: Ionic Liquids
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献