Release of Selected Non-Intentionally Added Substances (NIAS) from PET Food Contact Materials: A New Online SPE-UHPLC-MS/MS Multiresidue Method

Author:

Aigotti RiccardoORCID,Giannone Nicola,Asteggiano AlbertoORCID,Mecarelli Enrica,Dal Bello FedericaORCID,Medana ClaudioORCID

Abstract

Food contact materials (FCMs) are an underestimated source of food chemical contaminants and a potentially relevant route of human exposure to chemicals that are harmful to the endocrine system. Foods and water are the main sources of exposure due to contact with the packaging materials, often of polymeric nature. European Regulation 10/2011 requires migration tests on FCMs and foodstuffs to evaluate the presence of listed substances (authorized monomers and additives) and non-intentionally added substances (NIAS) not listed in the regulation and not subjected to restrictions. The tests are required to ensure the compliance of packaging materials for the contained foods. NIAS are a heterogeneous group of substances classified with a potential estrogenic or androgenic activity. Subsequently, the evaluation of the presence of these molecules in foods and water is significant. Here we present an online SPE/UHPLC-tandem MS method to quantify trace levels of NIAS in food simulants (A: aqueous 3% acetic acid; B: aqueous 20% ethanol) contained in PET preformed bottles. The use of online SPE reduces systemic errors thanks to the automation of the technique. For the developed analytical method, we evaluate the limit of detection (LOD), the limit of quantitation (LOQ), selectivity, RSD% and BIAS% for LLOQ for a total of twelve NIAS, including monomers, antioxidants, UV-filters and additives. LOD ranged between 0.002 µg/L for bisphenol S and 13.6 µg/L for 2,6-di-tert-butyl-4-methylphenol (BHT). LOQs are comprised between 0.01 µg/L for bisphenol S and 42.2 µg/L for BHT. The online-SPE/UHPLC-tandem MS method is applied to the food simulants contained in several types of PET packaging materials to evaluate the migration of the selected NIAS. The results show the presence (µg/L) of NIAS in the tested samples, underlining the need for a new regulation for these potentially toxic molecules.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3