Abstract
Biological surfaces such as skin and ocular surface provide a plethora of information about the underlying biological activity of living organisms. However, they pose unique problems arising from their innate complexity, constant exposure of the surface to the surrounding elements, and the general requirement of any sampling method to be as minimally invasive as possible. Therefore, it is challenging but also rewarding to develop novel analytical tools that are suitable for in vivo and in situ sampling from biological surfaces. In this context, wearable extraction devices including passive samplers, extractive patches, and different microextraction technologies come forward as versatile, low-invasive, fast, and reliable sampling and sample preparation tools that are applicable for in vivo and in situ sampling. This review aims to address recent developments in non-invasive in vivo and in situ sampling methods from biological surfaces that introduce new ways and improve upon existing ones. Directions for the development of future technology and potential areas of applications such as clinical, bioanalytical, and doping analyses will also be discussed. These advancements include various types of passive samplers, hydrogels, and polydimethylsiloxane (PDMS) patches/microarrays, and other wearable extraction devices used mainly in skin sampling, among other novel techniques developed for ocular surface and oral tissue/fluid sampling.
Subject
Filtration and Separation,Analytical Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献