Characterization and Photocatalytic Performance of Newly Synthesized ZnO Nanoparticles for Environmental Organic Pollutants Removal from Water System

Author:

Despotović Vesna1,Finčur Nina1ORCID,Bognar Sabolč1ORCID,Šojić Merkulov Daniela1ORCID,Putnik Predrag2ORCID,Abramović Biljana1ORCID,Panić Sanja3

Affiliation:

1. Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad Faculty of Sciences, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

2. Department of Food Technology, University North, Trg dr. Žarka Dolinara 1, 48000 Koprivnica, Croatia

3. Faculty of Technology, University of Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia

Abstract

Most countries are facing problems of environmental pollution due to toxic organic pollutants being discharged into the environment from various man-made sources. Heterogeneous photocatalysis is a possible solution for the mentioned problem, and it has been widely applied for the removal of pollutants from aqueous solutions, thanks to its high removal efficiency and environmental friendliness. Among the commonly used metal oxides, ZnO has attracted researchers’ interests due to its ecofriendly and nontoxic nature. In this work, ZnO nanoparticles (ZnO-NPs) were prepared by the precipitation method from water (w) and ethanol solutions of the corresponding metal precursors (zinc–acetate dihydrate, A_ZnO, and zinc–nitrate hexahydrate, N_ZnO) followed by calcination at different temperatures. The structure and morphology of the prepared catalysts were characterized by different techniques (XRD, BET, and SEM). Based on the XRD results, it can be seen that the synthesized NPs possess high purity. Furthermore, at a higher calcination temperature, a higher crystal size was observed, which was more intense in the case of the ethanol solution of the precursors. The BET analysis showed macropores at the surface and also indicated that the increased temperature led to decreased surface area. Finally, SEM images showed that in the case of the water precursor solution, an irregular, rod-like shape of the NPs was observed. The photocatalytic properties of newly synthesized ZnO-NPs exposed to simulated sunlight were examined during the removal of pesticide clomazone (CLO) and the antidepressant drug amitriptyline (AMI). ZnO-NPs prepared by the precipitation method from the water solution of zinc–acetate dihydrate and calcined at 500 °C (A_ZnOw_500) showed the highest performance under simulated sunlight. Furthermore, the activity of A_ZnOw_500 and N_ZnOw_500 catalysts in the removal of three organic pollutants from water—two pesticides (sulcotrione (SUL) and CLO) and one pharmaceutical (AMI)—was also compared. Results showed that decreased photocatalytic activity was observed in the presence of N_ZnOw_500 NPs in all investigated systems. Finally, the effect of the initial pH was also examined. It was found that in the case of CLO and SUL, there was no influence of the initial pH, while in the case of AMI the kapp was slightly increased in the range from pH ~7 to pH ~10.

Funder

Ministry of Education, Science and Technological Development of the Republic of Serbia

Science Fund of the Republic of Serbia

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3