Efficient Oxidative Desulfurization of High-Sulfur Diesel via Peroxide Oxidation Using Citric, Pimelic, and α-Ketoglutaric Acids

Author:

Ahmed Barham Sharif1,Hamasalih Luqman Omar1,Aziz Kosar Hikmat Hama12ORCID,Salih Yousif M.1,Mustafa Fryad S.1,Omer Khalid Mohammad1

Affiliation:

1. Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimaniyah 46001, Iraq

2. Department of Medical Laboratory of Science, College of Health Sciences, University of Human Development, Sulaimaniyah 46001, Iraq

Abstract

The widespread use of diesel fuel for transportation, industry, and electricity generation causes several environmental issues via an increase in the amount of sulfur compound emissions. Commercial diesel fuel must be free of sulfur-containing compounds since they can cause several environmental problems. Considering the currently available processes to eliminate sulfur compounds, oxidative desulfurization (ODS) is one of the effective means for this purpose. This work presented a simple, low cost, and efficient ODS system of high-sulfur diesel fuels using peroxide oxidation with the aid of citric, pimelic, and α-ketoglutaric acids. The aim of the study was to investigate the potential of these acids as hydrogen peroxide (H2O2) activators for ODS and to optimize the reaction conditions for maximum sulfur removal. The results showed that citric, pimelic, and α-ketoglutaric acids were effective catalysts for the desulfurization of high-sulfur diesel with an initial sulfur content of 2568 mg L−1, achieving a sulfur removal efficiency of up to 95%. The optimized reaction conditions were found to be 0.6 g of carboxylic acid dosage and 10 mL of H2O2 at 95 °C. The desulfurization efficiency of the real diesel sample (2568 mg L−1) was shown to be 27, 34, and 84.57%, using citric acid, α-ketoglutaric acid, and pimelic acid after 1h, respectively. The effectiveness of the oxidation process was characterized by gas chromatographic pulsed flame photometric detector (GC-PFPD) and Fourier-transform infrared spectroscopy (FTIR) techniques. The experimental results demonstrated that the developed system exhibited high efficiency for desulfurization of real high-sulfur diesel fuels that could be a good alternative for commercial application with a promising desulfurization efficiency.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3