Fabrication of Organic Solvent Nanofiltration Membrane through Interfacial Polymerization Using N-Phenylthioure as Monomer for Dimethyl Sulfoxide Recovery

Author:

Zhou Ayang1ORCID,Hu Guangle1,Guo Keying1,Zhang Mengnan1,Liu Xiangnan1

Affiliation:

1. School of Materials and Chemical Engineering, Chuzhou University, Chuzhou 239000, China

Abstract

To recover dimethyl sulfoxide, an organic solvent nanofiltration membrane is prepared via the interfacial polymerization method. N-Phenylthiourea (NP)is applied as a water-soluble monomer, reacted with trimesoyl chloride (TMC) on the polyetherimide substrate crosslinked by ethylenediamine. The results of attenuated total reflectance-fourier transform infrared spectroscopy and X-ray electron spectroscopy confirm that N-Phenylthiourea reacts with TMC. The membrane morphology is investigated through atomic force microscopy and scanning electronic microscopy, respectively. The resultant optimized TFC membranes NF-1NP exhibited stable permeance of about 4.3 L m−2 h−1 bar-1 and rejection of 97% for crystal violet (407.98 g mol−1) during a 36 h continuous separation operation. It was also found that the NF-1NP membrane has the highest rejection rate in dimethyl sulfoxide (DMSO), and the rejection rates in methanol, acetone, tetrahydrofuran, ethyl acetate and dimethylacetamide(DMAc) are 51%, 84%, 94%, 96% and 92% respectively. The maximum flux in the methanol system is 11 L m−2 h−1 bar−1, while that in acetone, tetrahydrofuran, ethyl acetate and DMAc is 4.3 L m−2 h−1 bar−1, 6.3 L m−2 h−1 bar−1, 3.2 L m−2 h−1 bar−1, 4.9 L m−2 h−1 bar−1 and 2.1 L m−2 h−1 bar−1, respectively. It was also found that the membrane prepared by N-Phenylthiourea containing aromatic groups has lower mobility and stronger solvent resistance than that of by thiosemicarbazide.

Funder

the Natural Science key Project of Anhui Education Department

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3