Study on Separation of Rhenium, a Surrogate Element of Fissiogenic Technetium, from Aqueous Matrices Using Ion-Selective Extraction Chromatographic Resins

Author:

Alam M.12ORCID,Begum Zinnat34,Furusho Yoshiaki5,Takata Hyoe3,Rahman Ismail3ORCID

Affiliation:

1. Graduate School of Symbiotic Systems Science and Technology, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan

2. Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Ganakbari, Savar, Dhaka 1344, Bangladesh

3. Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima 960-1296, Japan

4. Department of Civil Engineering, Southern University Bangladesh, Arefin Nagar, Bayezid Bostami, Chattogram 4210, Bangladesh

5. GL Sciences Inc., 6-22-1 Nishi Shinjuku, Shinjuku-ku, Tokyo 163-1130, Japan

Abstract

Long-lived fissiogenic technetium, 99Tc (half-life, 2.11 × 105 yrs), is a byproduct of the 235U and 239Pu fission in nuclear reactors and is a major component in nuclear waste. Hence, the monitoring of 99Tc activity in the environmental samples is essential. Techniques used to measure 99Tc in environmental samples include radiometric and non-radiometric approaches. Inductively coupled plasma mass spectrometry (ICP-MS) has some advantages among the methods due to its high sample throughput, better selectivity, and commercial availability. Rhenium (Re) is often used as the non-isotopic tracer during 99Tc measurement by ICP-MS. From this perspective, studying the separation behavior of Re from the aqueous matrix can provide helpful insight regarding the ecological monitoring of 99Tc. In the current work, three extraction chromatographic resins (ECRs), MetaSEP AnaLig Tc-01, MetaSEP AnaLig Tc-02, and Eichrom TRU, have been used to separate Re from the aqueous matrix. Operating variables, such as solution pH, choice of eluent and eluent concentration, matrix cation effect, and retention capacity, have been studied to optimize the separation protocol. The extraction and recovery behavior of Re was used to interpret the selectivity behavior of the ECRs. The Re separation factor at optimized operating conditions comparing with Mo and Ru (interfering elements during the measurement by ICP-MS) for Meta SEP AnaLig Tc-01, Meta SEP AnaLig Tc-02, and Eichrom TRU resin, respectively, are SFRe/Mo~32, 16.51, and ∞ (metal not retained at all), while SFRe/Ru~∞, 3.25, 5437. In terms of selectivity and retention capacity, MetaSEP AnaLig Tc-01 is the better choice for selective separation of Re, and, assumably so, also Tc, from the aqueous matrices.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Reference41 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3