Multi-Objective Optimisation of Biodiesel Synthesis in Simulated Moving Bed Reactor

Author:

Ray Nillohit Mitra,Ray Ajay K.ORCID

Abstract

In this work, multi-objective optimisation study was performed to determine the performance improvement in a simulated moving bed reactor (SMBR) for biodiesel synthesis. The selection of the operating parameters such as switching time, liquid flow rates in various sections, as well as the length and number of columns is not straightforward in an SMBR. In most cases, conflicting requirements and constraints influence the optimal selection of the decision (operating or design) variables. A mathematical model that predicts single-column experimental results well was modified and verified experimentally for multiple-column SMBR system. In this article, a few multi-objective optimisation problems were carried out for both existing set-up as well as at the design stage. A non-dominated sorting genetic algorithm (NSGA) was used as the optimisation tool for the optimisation study. Due to conflicting effect of process parameters, the multi-objective optimisation study resulted in non-dominated Pareto optimal solutions. It was shown that significant increase in yield and purity of biodiesel in SMBR was possible both for operating and at design stage.

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3