Author:
Sun Liqing,Cao Yijun,Li Lin,Zeng Qingliang
Abstract
Calcium ions are common in flotation process water, and have a significant effect on the molybdenite floatability, making separation of molybdenite from other minerals more difficult. Therefore, to improve the separation selectivity, the research of how calcium ions affect the molybdenite surface properties is of great significance. In this study, various methods including flotation tests, contact angle measurements, batch adsorption tests and Density Functional Theory (DFT) simulations were carried out to understand the adsorption characteristics and mechanism. Results of the contact angle measurements showed that the inhibition effects of calcium ions on molybdenite flotation kinetics were mostly attributed to the decrease of the edge surface hydrophobicity, as the contact angle of the edge surface decreased more than the face surface after treatment with calcium ions. While fitting the results of batch adsorption tests with adsorption kinetics and isotherm models, it was found that the Lagergen pseudo-first-order equation and the Freundlich isotherm model nicely follow the experimental trend. Moreover, DFT calculation results indicated that both Ca2+ and CaOH+ preferentially adsorb on the molybdenite (100) surface, particularly the edge surface, which was consistent with the contact angle results. Ca2+ adsorbed on the Mo-top site on the S-(100) surface by forming Ca-S bonds, transferring electrons from Ca 3d orbitals to S 3p orbitals. CaOH+ adsorbed on the S-top site of Mo-(100) surface by forming a strong covalent Mo-O bond and S-Ca bond. The results provide a basis for understanding and improving the separation effect of molybdenite from other minerals in the presence of calcium ions.
Funder
National Nature Science Foundation of China
Subject
Filtration and Separation,Analytical Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献