Fluorinated Poly(ionic liquid)s Coated Superhydrophobic Functional Materials with Efficient Oil/Water Separation Performance

Author:

Shen Fumin1,Cheng Xuna2,Yao Shunyang2,Pei Yuanchao3ORCID

Affiliation:

1. School of Pharmacy, Xinxiang University, Xinxiang 453003, China

2. College of Forestey, Henan Agricultural University, Zhengzhou 450002, China

3. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China

Abstract

There is an urgent need to develop new and improved oil-water separation materials with high stability and reusability for the cleanup of oily environmental pollutants. Here, fluorinated poly(ionic liquid)s were synthesized and their structure and property were characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy and thermogravimetric analysis. These fluorinated poly(ionic liquid)s were proposed as superhydrophobic coating on different metallic substrates through the combination of tethering fluorine groups in the PIL’s cation and anion exchange, and the superhydrophobic coating showed compactly stacked morphology under scanning electron microscope. The results of surface wettability experiments indicated that nearly all the fabricated materials showed a water contact angle larger than 150°, which is devoted to superhydrophobic nature. Moreover, for longer alkyl chain ILs and materials with smaller pore sizes, the water contact angle can be increased. At the same time, the fabricated superhydrophobic material exhibits a relatively high oil phase permeate flux, benefiting from the loose fibrous structure. Take the PIL@SSM300 for instance, the permeate fluxes were reached as high as 374,370 L·m−2·h−1, 337,200 L·m−2·h−1 and 302,013 L·m−2·h−1 for petroleum ether, hexane and cyclohexane, respectively. Instead, water is effectively repelled from the superhydrophobic surface. These virtues make the fabricated superhydrophobic material an effective membrane for oil/water separation under gravity. The separation efficiency and water contact angle are nearly unaffected after at least 20 cycles, confirming the excellent robustness of the coatings. These efficient poly(ionic liquid)s-based superhydrophobic materials possessed the potential to be used for oil/water separation.

Funder

Key Scientific Research Projects of Colleges and Universities in Henan Province

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Poly(ionic liquids) membranes preparation and its application;Journal of Molecular Structure;2024-05

2. Polymeric ionic liquids: Here, there and everywhere;European Polymer Journal;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3