Variation of Flow Hydrodynamic Parameters and Prediction of Particle Separation Indices in the Spiral Concentrator with the Regulation of Pitch-Diameter Ratio

Author:

Gao Shuling1ORCID,Zhou Xiaohong1,Meng Lingguo2,Zhao Qiang1,Liu Wengang1ORCID

Affiliation:

1. School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

2. College of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

Abstract

The pitch-diameter ratio is an important design indicator affecting the separation performance of spirals. Based on the numerical simulation method, this paper systematically investigated the variation of flow hydrodynamic parameters in the spiral concentrator with the regulation of the pitch-diameter ratio. The radial distribution and variation trend of hematite and quartz particles with different particle sizes are further analyzed. Additionally, the separation indices of hematite and quartz with different particle size combinations were predicted. The results show that the tangential velocity, maximum radial velocity, velocity shear rate, and Reynolds number of fluid in each region decrease with the increase of the pitch-diameter ratio. The range of laminar flow gradually expands as the pitch-diameter ratio increases. There are significant differences in depth of water, ratio of inward and outward flows, and secondary flow velocity in different regions. Some flow hydrodynamic parameters at the inner trough reach relative equilibrium at a pitch-diameter ratio of 0.675. Hematite and quartz particles form a selective distribution in the trough surface, which comprehensively reflects the density effect, particle size effect, following flow effect of fine particles, and the effect of interstitial trickling of high-density fine particles. Fine hematite and coarse quartz form a large amount of misplaced material, and there is a corresponding mixing area. With the increase in pitch-diameter ratio, coarse and fine hematite particles migrate inward and outward, respectively. With the increase in pitch-diameter ratio, the misplaced amount of quartz on the inner trough decreases, but the outward migration distance of coarse quartz is smaller. Increasing the pitch-diameter ratio is beneficial to the separation of combined feedings of coarse hematite and quartz but unfavorable to that of fine hematite and quartz. The maximum separation efficiency of coarse hematite and fine quartz can reach 85.74%, and the iron grade of the inner product can reach 65.96% when the pitch-diameter ratio is 0.675 and the splitter location is 115 mm. The changing trend of separation indices in this feeding is closely related to the variation of fluid parameters and the change in the radial distribution of single mineral particles. The research results can provide references for the structural design of spirals, the selection of feed particle size, and the adjustment of splitter location.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3