Purification of High-Purity Tin via Vertical Zone Refining

Author:

Wen Jiajun12ORCID,Wu Meizhen3,Peng Jubo3,Zheng Hongxing12ORCID

Affiliation:

1. Shanghai Engineering Research Center for Integrated Circuits and Advanced Display Materials, Shanghai University, Shanghai 200444, China

2. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China

3. Research & Development Center, Yunnan Tin Group (Holding) Limited Company, Kunming 650032, China

Abstract

The present investigation delves into the potential of vertical zone refining as an effective purification technique for achieving high-purity tin (Sn) metal. The utilization of vertical zone refining offers distinct advantages over traditional horizontal zone refining, as it allows for enhanced control over the molten zone and solid–liquid interface, ultimately leading to superior impurity separation efficiency. The present study reveals that the solute partition coefficients (k0) of various impurity elements, such as Zn, Ag, Al, Mg, Ca, Ni, In, Co, Cu, As, Pb, Fe, and Bi, during the vertical zone refining process consistently demonstrate values below one. Notably, the partition coefficient of Sb deviates slightly from the others, being greater than one but approaching one. The authors achieve exceptional levels of purity in both the bottom and middle regions of the rod by subjecting the Sn melt to nine passes of vertical zone refining at a heating temperature of 405 °C and a downward pulling rate of 10 µm/s, resulting in purities exceeding 6N4. Furthermore, by evaluating the effective partition coefficients (keff), it was determined that impurity elements, such as Cu and Bi, closely approach their equilibrium partition coefficients, reaching values of approximately 0.492 and 0.327, respectively. To further enhance the purity of Sn metal and maximize product yield, we propose the utilization of electrolytic refining and vacuum distillation, with particular emphasis on the efficient separation of five specific elements, including Cu, Fe, As, Pb, and Sb. By elucidating these findings, this study not only contributes valuable insights into the efficacy of vertical zone refining as a purification technique for high-purity tin metal, but also offers important recommendations for refining strategies and impurity element separation.

Funder

National Natural Science Foundation of China

Science and Technology Major Project of Yunnan Province

Publisher

MDPI AG

Subject

Filtration and Separation,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3